

DESARROLLO DE MATERIALES DE ALTA ENTROPÍA A TRAVÉS DE TÉCNICAS DE PROYECCIÓN "HEA CLADDING"

Entregable: 6.1. Informe final de resultados globales

Programa: Proyectos de I+D en colaboración con empresas Número de proyecto: 22200058 Expediente: IMDEEA/2022/17 Duración: Del 01/09/2022 al 30/09/2023 Coordinado en AIDIMME por: NIÑEROLA GONZÁLEZ, RUBÉN

ÍNDICE

ÍNDICE	1
INTRODUCCIÓN, OBJETIVOS DEL PROYECTO	1
RESULTADOS OBTENIDOS	2
DESARROLLO DE CUPONES Y ANÁLISIS. TÉCNICA LASER CLADDING.	2
CUPONES PRELIMINARES. TÉCNICA LASER CLADDING.	6
MEDICIÓN DE LA POROSIDAD DE LOS CORDONES PRELIMINARES	8
MEDICIÓN DE LOS CORDONES PRELIMINARES	20
DETERMINACIÓN DE LOS PARÁMETROS OPTIMIZADOS EN BASE A LOS ANÁLISIS MICROESTRUCTURALES	31
ESTUDIO DE DUREZAS SOBRE CUPONES PRELIMINARES	33
ESTUDIOS TÉRMICOS DE MATERIAL TRAS PROYECCIÓN.	35
MICROSCOPIA ELECTRÓNICA DEL MATERIAL EN FORMATO POLVO	40
ESTUDIO DE CUPONES OPTIMIZADOS ALO, 1CRFECONI.	55
ESTUDIO DE CUPONES OPTIMIZADOS TI25NB25ZR25TA25.	68
RESUMEN Y CONCLUSIONES.	72
TRABAJOS FUTUROS.	73

Introducción, objetivos del proyecto.

A continuación, se presentan los resultados obtenidos del desarrollo de materiales de alta entropía a través de dos técnicas de fabricación diferentes en cuanto a la velocidad de proyección, la técnica de laser cladding y la técnica EHLA descritas en los entregables anteriores. Se presentan los resultados obtenidos en las tareas de definición de variables preliminares o plan experimental para llevar a cabo la selección de variables optimizados para dos tipos de materiales desarrollados, tanto de material con composición equimásico como equiatómico. Tras esta definición se desarrollan los materiales con diferentes espesores o cantidad de adición de polvo, lo que nos permitirá caracterizar el recubrimiento y la interacción que tiene lugar con el material base.

Para llevar a cabo esta relación se establecen diferentes tipos de ensayos entre los cuales destacan las inspecciones metalográficas para dictaminar la penetración del cordón, nivel de mezclado con el material base y la presencia o no defectos característicos como porosidades o aparición de grietas. La selección de los parámetros adecuados se basó en una relación de compromiso entre la magnitud de los defectos encontrados y el aporte energético empleado en el desarrollo de los recubrimientos.

También se han estudiado los materiales desarrollados a través de ensayos que nos reporten información de la entidad mecánica del recubrimiento, tanto de las pruebas preliminares para dictaminar los parámetros óptimos como de la selección final a través de diversos ensayos mecánicos.

A la vez también se han llevado a cabo análisis mediante el microscopio electrónico de barrido para comprobar la evolución de los elementos químicos en distintas partes del cordón y si existen modificaciones sustanciales entre el químico del material aportado, el polvo metálico, y el recubrimiento obtenido. Por otro lado, se han realizado caracterizaciones térmicas mediante calorimetría para comprobar el comportamiento de las aleaciones.

Financiado por ¹ la Unión Europea

Resultados obtenidos

Desarrollo de cupones y análisis. Técnica laser cladding.

A continuación, se muestras las tareas y resultados obtenidos del análisis de los cupones desarrollados mediante técnicas de laser cladding con materiales de alta entropía. A partir de unos parámetros preliminares se seleccionaran los un grupo de ellos para su posterior optimización.

Imagen 1. Partes del proceso llevado a cabo durante para la deposición del polvo. (a) Equipo empleado. (b) soporte o material de sustrato; (c) momento previo a la deposición donde se comprueba el caudal de salida del polvo; (d) momento de la proyección del polvo metálico; € parte de la maquinaria empleada donde se aprecia el dosificador, el brazo robot y la pistola de proyección.

Financiado por² la Unión Europea Para el desarrollo de estas pruebas preliminares se llevó a cabo en análisis de diferentes escenarios de parámetros sobre dos tipos de materiales de composición TiNbZrTa con una diferencia, que uno de ellos tiene una composición equiatómica mientras que la otra tiene una composición equimásica.

Ţ	Power (W)	Speed	▼ Speed (m/s)	Spe 💌	RPM	Fee(- rate	▼ Feed rate	Aporte Polvo (g/m)	Densida - Pot (W/mm2)	Energía 👻 especifica (1/mm2)	Polvo específico	Energía 👻 polvo (1/a)	▼. Comentarios
1	2.000	1000	0,0167	16,667	39	15,28	0,254735	15,2841	159,23567	30	0,00382103	7851,2964	PROTECCIÓN 3@10, IMPULSION FST 1,5@10. CORDÓN SUELTO
2	2.500	1000	0,0167	16,667	39	15,28	0,254735	15,2841	199,04459	37,5	0,00382103	9814,1206	PROTECCIÓN 3@10, IMPULSION FST 1,5@10. CORDÓN SUELTO
3	3.000	1000	0,0167	16,667	39	15,28	0,254735	15,2841	238,8535	45	0,00382103	11776,945	PROTECCIÓN 3@10, IMPULSION FST 1,5@10. CORDÓN SUELTO
4	3.500	1000	0,0167	16,667	39	15,28	0,254735	15,2841	278,66242	52,5	0,00382103	13739,769	PROTECCIÓN 3@10, IMPULSION FST 1,5@10. CORDÓN SUELTO
5	2.000	1000	0,0167	16,667	51	19,99	0,333115	19,9869	159,23567	30	0,00499673	6003,9326	PROTECCIÓN 3@10, IMPULSION FST 1,5@10. CORDÓN SUELTO
6	2.500	1000	0,0167	16,667	51	19,99	0,333115	19,9869	199,04459	37,5	0,00499673	7504,9157	PROTECCIÓN 3@10, IMPULSION FST 1,5@10. CORDÓN SUELTO
7	3.000	1000	0,0167	16,667	51	19,99	0,333115	19,9869	238,8535	45	0,00499673	9005,8989	PROTECCIÓN 3@10, IMPULSION FST 1,5@10. CORDÓN SUELTO
8	3.500	1000	0,0167	16,667	51	19,99	0,333115	19,9869	278,66242	52,5	0,00499673	10506,882	PROTECCIÓN 3@10, IMPULSION FST 1,5@10. CORDÓN SUELTO
9	2.000	1000	0,0167	16,667	64	25,08	0,41802667	25,0816	159,23567	30	0,0062704	4784,3838	PROTECCIÓN 3@10, IMPULSION FST 1,5@10. CORDÓN SUELTO
10	2.500	1000	0,0167	16,667	64	25,08	0,41802667	25,0816	199,04459	37,5	0,0062704	5980,4797	PROTECCIÓN 3@10, IMPULSION FST 1,5@10. CORDÓN SUELTO
11	3.000	1000	0,0167	16,667	64	25,08	0,41802667	25,0816	238,8535	45	0,0062704	7176,5757	PROTECCIÓN 3@10, IMPULSION FST 1,5@10. CORDÓN SUELTO
12	3.500	1000	0,0167	16,667	64	25,08	0,41802667	25,0816	278,66242	52,5	0,0062704	8372,6716	PROTECCIÓN 3@10, IMPULSION FST 1,5@10. CORDÓN SUELTO
Solape 1	2.500	1000	0,0167	16,667	39	15,28	0,254735	15,2841	199,04459	37,5	0,00382103	9814,1206	PROTECCIÓN 3@10, IMPULSION FST 1,5@10. Paso 2,4 .
Solape 2	2.000	1000	0,0167	16,667	39	15,28	0,254735	15,2841	159,23567	30	0,00382103	7851,2964	PROTECCIÓN 3@10, IMPULSION FST 1,5@10. Paso 2,25 .

Tabla 1. Parámetros llevados a cabo en las pruebas preliminares para el caso de material equiatómico.

Para la definición de las variables del proceso partimos de la potencia base como variable principal la cual la situamos en 4 rangos que van desde 2000 hasta los 3500 W en bloques de 500 en 500.

La siguiente variable fue el aporte de material, la alimentación, la cual la establecemos con las siguientes variables 0.25, 0.33, 0.42 g/s, siendo la velocidad del brazo robot constantes a 16,67 mm/s. De esta forma tenemos una tabla de variables de 3x4, obteniendo así 12 cordones que pudieran ser los adecuados para obtener el menor número de defectos como poros o agrietamientos.

A través de estas variables se obtienen los parámetros de potencia, energía especifica o energía aplicada al polvo. A partir de estos valores podremos predecir el comportamiento del polvo a través de la modificación de algún parámetro en concreto, de tal forma que podamos obtener como el mapa del procesado optimo.

Por otro lado, se llevaron a cabo las planificaciones de los parámetros del material equimásico.

Ţ	Power	₹ Sneed	▼	Spe∈▼	-	▼ Feed rate	Feed rate	Aporte 🚽 Polvo	Densida 🖕 Pot	Energía 🚽	Polvo -	Energíc 🚽	
	(W)	(mm/min)	(m/s)	(mm/s)	RPM	(g/min)	(g/s)	(g/m)	(W/mm2)	(J/mm2)	(g/mm2)	(J/g)	Comentarios
1	2.000	1000	0,0167	16,667	44	15,01	0,25014	15,0084	159,235669	30	0,0037521	7995,5225	PROTECCIÓN 3@10, IMPULSION FST 1,5@10. CORDÓN SUELTO
2	2.500	1000	0,0167	16,667	44	15,01	0,25014	15,0084	199,044586	37,5	0,0037521	9994,4031	PROTECCIÓN 3@10, IMPULSION FST 1,5@10. CORDÓN SUELTO
3	3.000	1000	0,0167	16,667	44	15,01	0,25014	15,0084	238,853503	45	0,0037521	11993,284	PROTECCIÓN 3@10, IMPULSION FST 1,5@10. CORDÓN SUELTO
4	3.500	1000	0,0167	16,667	44	15,01	0,25014	15,0084	278,66242	52,5	0,0037521	13992,164	PROTECCIÓN 3@10, IMPULSION FST 1,5@10. CORDÓN SUELTO
5	2.000	1000	0,0167	16,667	59	20,12	0,335415	20,1249	159,235669	30	0,00503123	5962,7625	PROTECCIÓN 3@10, IMPULSION FST 1,5@10. CORDÓN SUELTO
6	2.500	1000	0,0167	16,667	59	20,12	0,335415	20,1249	199,044586	37,5	0,00503123	7453,4532	PROTECCIÓN 3@10, IMPULSION FST 1,5@10. CORDÓN SUELTO
7	3.000	1000	0,0167	16,667	59	20,12	0,335415	20,1249	238,853503	45	0,00503123	8944,1438	PROTECCIÓN 3@10, IMPULSION FST 1,5@10. CORDÓN SUELTO
8	3.500	1000	0,0167	16,667	59	20,12	0,335415	20,1249	278,66242	52,5	0,00503123	10434,834	PROTECCIÓN 3@10, IMPULSION FST 1,5@10. CORDÓN SUELTO
9	2.000	1000	0,0167	16,667	74	25,24	0,42069	25,2414	159,235669	30	0,00631035	4754,0945	PROTECCIÓN 3@10, IMPULSION FST 1,5@10. CORDÓN SUELTO
10	2.500	1000	0,0167	16,667	74	25,24	0,42069	25,2414	199,044586	37,5	0,00631035	5942,6181	PROTECCIÓN 3@10, IMPULSION FST 1,5@10. CORDÓN SUELTO
11	3.000	1000	0,0167	16,667	74	25,24	0,42069	25,2414	238,853503	45	0,00631035	7131,1417	PROTECCIÓN 3@10, IMPULSION FST 1,5@10. CORDÓN SUELTO
12	3.500	1000	0,0167	16,667	74	25,24	0,42069	25,2414	278,66242	52,5	0,00631035	8319,6653	PROTECCIÓN 3@10, IMPULSION FST 1,5@10. CORDÓN SUELTO
Solape 1	2.500	1000	0,0167	16,667	44	15,01	0,25014	15,0084	199,044586	37,5	0,0037521	9994,4031	PROTECCIÓN 3@10, IMPULSION FST 1,5@10. Paso 2,4.

Tabla 2. Parámetros llevados a cabo en las pruebas preliminares para el caso de material equimasico.

Las variables son similares que en el caso anterior, pero existe ciertas diferencias con la velocidad de alimentación. La velocidad de alimentación del material aportado va desde 15.01, 20.12 y 25.24 g/min, lo cual es similar pero no exactamente igual a la alimentación del material equiatómico.

Una vez llevados a cabo los cupones se propuso a realizar las mediciones para comprobar cómo han afectado las variables del proceso a las dimensiones de los cordones, cuando penetran con el metal base y que tipo de geometrías tienen cuando se encuentran libres o con cordones solapados. Para ello se llevan a cabo el procedimiento de corte de cada uno de los 12 cordones preliminares para cada uno de los materiales, para posteriormente embutirlos en una resina en caliente y proceder a la preparación metalográfica de cada uno de ellos, para así poder medir el cordón mediante el empleo de un microscopio óptico con su correspondiente análisis de imagen.

De las características geométricas medidas se deben diferenciar las áreas fundidas superiores e inferiores, que serían lo que llamaremos el área del cordón en el cual se supone que obtenemos en su mayor parte el porcentaje de elementos de aleación presentes el polvo de partida, y por otro, el área del cordón que ha penetrado en el metal base, que tendrá un porcentaje de mezcla del material de aporte y el metal base. Este valor nos representara el porcentaje de dilución que tiene lugar con cada combinación de parámetros de proceso. También se estudian las geometrías presentes, tanto la altura del cordón como la altura de penetración, y finalmente lo que seria el ancho del cordón.

Financiado por ⁴ la Unión Europea Por último, otra característica a medir es el grado o nivel de aporte el cual nos indicaran la relación de aspecto del cordón, que no deja de ser una relación entre el ancho y la altura del cordón, o lo que es lo mismo el ángulo de mojado que tiene lugar en el cordón.

Imagen 2. Ejemplos de las medidas realizadas sobre los cordones.

Financiado por ⁵ la Unión Europea A continuación, se presentan los cordones preliminares obtenidos mediante los parámetros definidos con anterioridad. La nomenclatura que seguiremos desde este apartado hasta el final del informe se basará en las designaciones E1 para material equimásico y E2 para material equiatómico.

Cupones preliminares. Técnica laser cladding.

Imagen 3. Cupón obtenido para determinar los parámetros analizados del material equiatómico.

Imagen 4. Cupón obtenido para determinar los parámetros analizados del material equimásico.

En general, en todos los cordones se presenta una morfología de cordón adecuada sin

presencia a simple vista de elementos que puedan descartar el parámetro en concreto como pudieran ser porosidades y la aparición de grandes agrietamientos, aunque si nos servimos de algún equipo capaz de aumentar la visión podemos ver que en los exteriores de los cordones y en algunos de ellos existen como cuevas o porosidades externas que nos indican que el material no se encuentra del todo bien depositado, sobre todo lo podemos ver en la muestra 10 del cupón equiátomico y del 7 al 12 del equimásico.

Financiado por ⁷ la Unión Europea

Medición de la porosidad de los cordones preliminares.

Antes de llevar a cabo las mediciones geométricas de las características geométricas de los cordones, se van a llevar a cabo una medición de las porosidades internas debido a la dificultad de evaluar estas a través de la inspección superficial. Para ello, y a través de las técnicas metalográficas, vamos a seleccionar las áreas de medición y discriminar así las áreas de los poros que nos encontramos en cada una de ellas.

ANÁLISIS DE POROSIDADES E1 EQUIMÁSICO

Figura nº 1. Muestra 1_E1, medición de porosidades mediante analizador de imágenes.

Figura nº 2. Muestra 2_E1, medición de porosidades mediante analizador de imágenes.

Figura nº 3. Muestra 3_E1, medición de porosidades mediante analizador de imágenes.

Financiado por ⁸ la Unión Europea

Figura nº 4. Muestra 4_E1, medición de porosidades mediante analizador de imágenes.

Figura nº 5. Muestra 5_E1, medición de porosidades mediante analizador de imágenes.

Figura nº 6. Muestra 6_E1, medición de porosidades mediante analizador de imágenes.

Figura nº 7. Muestra 7_E1, medición de porosidades mediante analizador de imágenes.

Figura nº 8. Muestra 8_E1, medición de porosidades mediante analizador de imágenes.

Figura nº 9. Muestra 9_E1, medición de porosidades mediante analizador de imágenes.

Figura nº 10. Muestra 10_E1, medición de porosidades mediante analizador de imágenes.

Financiado por ¹⁰ la Unión Europea

Figura nº 11. Muestra 11_E1, medición de porosidades mediante analizador de imágenes.

Figura nº 12. Muestra 12_E1, medición de porosidades mediante analizador de imágenes.

Financiado por 11 la Unión Europea

ANÁLISIS POROSIDADES E2 EQUIATÓMICO

Figura nº 13. Muestra 4_E2, medición de porosidades mediante analizador de imágenes.

Figura nº 14. Muestra 3_E2, medición de porosidades mediante analizador de imágenes.

Figura nº 15. Muestra 2_E2, medición de porosidades mediante analizador de imágenes.

Figura nº 16. Muestra 1_E2, medición de porosidades mediante analizador de imágenes.

Figura nº 17. Muestra 5_E2, medición de porosidades mediante analizador de imágenes.

Figura nº 18. Muestra 6_E2, medición de porosidades mediante analizador de imágenes.

Figura nº 19. Muestra 7_E2, medición de porosidades mediante analizador de imágenes.

Figura nº 20. Muestra 8_E2, medición de porosidades mediante analizador de imágenes.

Figura nº 21. Muestra 9_E2, medición de porosidades mediante analizador de imágenes.

Financiado por ¹⁴ la Unión Europea

Figura nº 22. Muestra 10_E2, medición de porosidades mediante analizador de imágenes.

Figura nº 23. Muestra 11_E2, medición de porosidades mediante analizador de imágenes.

Figura nº 24. Muestra 12_E2, medición de porosidades mediante analizador de imágenes.

CORDON	% POROS
4_E2	13,79
3_E2	8,59
2_E2	11,28
1_E2	10,20

5_E2	21,48
6_E2	14,06
7_E2	11,99
8_E2	14,16
9_E2	14,89
10_E2	16,36
11_E2	10,78
12_E2	9,91
1_E1	11,47
2_E1	19,28
3_E1	13,96
4_E1	4,58
5_E1	17,51
6_E1	18,31
7_E1	12,12
8_E1	9,46
9_E1	15,76
10_E1	15,99
11_E1	24,79
12_E1	16,68

Tabla 3. Medidas de las porosidades obtenidas.

Imagen 5. Muestras con porosidades para la denominación de materiales E1 en donde se puede apreciar que el menor contenido de porosidades se logra en la muestra 4.

Como se puede ver en la gráfica superior los números de cordones que destacan por su alto contenido de porosidades destacando por encima de todo las referencias 2, 5, 6, 9, 10, 11 y 12 en cuanto a los materiales E1. En todos estos casos el nivel de porosidad es

superior al 10.0%, todos ellos esféricos. Estos niveles de porosidad son muy groseros para los estándares de calidad de cualquier material. De todos ellos, los parámetros 4 y 8 son los que presentan unas mejoras en comparación con los otros, pero a pesar de ellos siguen siendo altos, alcanzando hasta el 5,0%. No se ha presentado en ninguno de los casos agrietamiento producidos por un rápido intercambio de calor, ni en la interfase ni en el propio cordón.

Imagen 6. Muestras con porosidades para la denominación de materiales E2 en donde se puede apreciar que el menor contenido de porosidades se logra en las muestras 2, 3 y 4.

Si nos centramos en el material equiatómico vemos que los niveles de porosidad son algo mayores, destacando la configuración 2 como la que menor tiene, a pesar de rondar el 10% de porosidad. Si vemos de este material, el equiatómico los datos en relación a la potencia suministrada por el equipo para la deposición podemos ver una tendencia relacionada. En la imagen inferior vemos que una mayor potencia conlleva niveles de porosidad menores, lo contrario que tiene lugar con la potencia baja, de 2000W, en donde podemos incluso duplicar el porcentaje de porosidad.

En el caso del material equimásico ocurre un poco lo mismo, aunque la tendencia no

Financiado por ¹⁷ la Unión Europea esta tan clara. En cualquier caso menores potencias promueven la formación másiva de poros.

Imagen 8. Muestras con porosidades en función de la energía en el polvo.

Finalmente, en la gráfica superior se puede ver claramente que la afección de la porosidad estriba en un aporte energético menor en el polvo o materia prima. De alguna forma una menor intensidad no permita la evacuación de la porosidad al exterior debido a la corta permanencia del metal en estado líquido. Mayores intensidades y por lo tanto mayor energía en el polvo de alimentación provocarán que los poros puedan ser evacuados presentando niveles realmente bajos. El problema de introducir un alto valor

energético es la posibilidad de la aparición de defectos como el agrietamiento, pero como hemos visto esto no tiene lugar. De este análisis podemos ver que la aleación presente ventajas en cuanto a la posibilidad de manejar distintos parámetros y a distintos niveles sin que estos afecten en gran medida a la aparición de defectología asociada.

Financiado por ¹⁹ la Unión Europea

Medición de los cordones preliminares.

Tras los análisis de las porosidades se llevaron a cabo las medidas de las características dimensionales de los cordones para comprobar entre otras cosas el grado de dilución que tiene lugar en los cordones. Aquellas que tengan un nivel de dilución mayor presentaran una mezcla mayor con el metal base, y por lo tanto modificaran la composición química del recubrimiento de alta entropía. La relación de aspecto del cordón también será importante para dictaminar a que grada de solape tendremos que trabajar entre cordón y cordón.

A continuación, se presentan las mediciones llevadas a cabo de las características dimensionales de los cordones.

ANÁLISIS CARACTERÍSTICAS DIMENSIONALES E1 EQUIMÁSICO

Figura nº 25. Muestra 1_E1, medición de las características microestructurales mediante análisis de imagen.

Figura nº 26. Muestra 2_E1, medición de las características microestructurales mediante análisis de imagen.

Figura nº 27. Muestra 3_E1, medición de las características microestructurales mediante análisis de imagen.

Figura nº 28. Muestra 4_E1, medición de las características microestructurales mediante análisis de imagen.

Figura nº 29. Muestra 5_E1, medición de las características microestructurales mediante análisis de imagen.

Figura nº 30. Muestra 6_E1, medición de las características microestructurales mediante análisis de imagen.

Figura nº 31. Muestra 7_E1, medición de las características microestructurales mediante análisis de imagen.

Figura nº 32. Muestra 8_E1, medición de las características microestructurales mediante análisis de imagen.

Figura nº 33. Muestra 9_E1, medición de las características microestructurales mediante análisis de imagen.

Figura nº 34. Muestra 10_E1, medición de las características microestructurales mediante análisis de imagen.

Figura nº 35. Muestra 11_E1, medición de las características microestructurales mediante análisis de imagen.

Figura nº 36. Muestra 12_E1, medición de las características microestructurales mediante análisis de imagen.

ANÁLISIS CARACTERÍSTICAS DIMENSIONALES E2 EQUIATÓMICO

Figura nº 37. Muestra 4_E2, medición de las características microestructurales mediante análisis de imagen.

Figura nº 38. Muestra 3_E2, medición de las características microestructurales mediante análisis de imagen.

Figura nº 39. Muestra 2_E2, medición de las características microestructurales mediante análisis de imagen.

Financiado por ²⁵ la Unión Europea

Figura nº 40. Muestra 1_E2, medición de las características microestructurales mediante análisis de imagen.

Figura nº 41. Muestra 5_E2, medición de las características microestructurales mediante análisis de imagen.

Figura nº 42. Muestra 6_E2, medición de las características microestructurales mediante análisis de imagen.

Figura nº 43. Muestra 7_E2, medición de las características microestructurales mediante análisis de imagen.

Figura nº 44. Muestra 8_E2, medición de las características microestructurales mediante análisis de imagen.

Figura nº 45. Muestra 9_E2, medición de las características microestructurales mediante análisis de imagen.

Figura nº 46. Muestra 10_E2, medición de las características microestructurales mediante análisis de imagen.

Figura nº 47. Muestra 11_E2, medición de las características microestructurales mediante análisis de imagen.

Figura nº 48. Muestra 12_E2, medición de las características microestructurales mediante análisis de imagen.

	Ángulo1	Ángulo2	Ángulo3	Ángulo4	w (μm)	h1 (μm)	h2 (µm)	Α1 (μm²)	Α2 (μm²)
4_E2	77	69	23	33	5322	714	921	2385280	3394591

3_E2	63	86	29	49	4807	737	782	2405458	2416046
2_E2	39	37	43	45	4357	747	526	2278583	1667532
1_E2	29	59	41	53	3917	652	374	1762608	1033257
5_E2	24	40	69	66	3970	934	240	722695	2535255
6_E2	56	38	52	63	4555	909	417	1469605	2922771
7_E2	55	68	50	64	5014	911	579	2211715	3296368
8_E2	154	74	43	20	5415	825	778	3205669	3290996
9_E2	53	20	66	39	3991	1056	265	695505	3052495
10_E2	55	50	42	53	4549	1021	377	3312362	1185201
11_E2	125	78	57	41	5098	1053	444	1809299	3867819
12_E2	53	66	58	26	5388	1037	585	2592004	4126285

Tabla 4. Medidas obtenidas de las medidas equiatómicas.

1_E131386649406857235391128616429172_E1246935514560632537164541720151043_E1428131604743598729253157518958094_E138751547545863381232465142048395_E133247248401473432473868121646326_E1341958444681849504149885726634567_E1375933225043791713245810327798428_E1415923205579748833304225928163209_E1101071553886929165390280292506610_E1184875414555100347213204543479372		Ángulo1	Ángulo2	Ángulo3	Ángulo4	w (μm)	h1 (μm)	h2 (μm)	Α1 (μm²)	Α2 (μm²)
2_E1246935514560632537164541720151043_E1428131604743598729253157518958094_E1387515475458633812324651422048395_E13324724840147343247386812164326_E13419584446818495041498572634567_E1375933225043791713245810327798428_E1415923205579748833304225928163209_E1101071553886929165390280292506610_E1184875414555100347213204543479372	1_E1	31	38	66	49	4068	572	353	911286	1642917
3_E1428131604743598729253157518958094_E1387515475458633812324651422048395_E133247248401473432473868121646326_E1341958444681849504149885726634567_E1375933225043791713245810327798428_E1415923205579748833304225928163209_E1101071553886929165390280292506610_E1184875414555100347213204543479372	2_E1	24	69	35	51	4560	632	537	1645417	2015104
4_E1387515475458633812324651422048395_E133247248401473432473868121646326_E134195844468184950414985726634567_E1375933225043791713245810327798428_E1415923205579748833304225928163209_E1101071553886929165390280292506610_E1184875414555100347213204543479372	3_E1	42	81	31	60	4743	598	729	2531575	1895809
5_E133247248401473432473868121646326_E1341958444681849504149885726634567_E1375933225043791713245810327798428_E1415923205579748833304225928163209_E1101071553886929165390280292506610_E1184875414555100347213204543479372	4_E1	38	75	15	47	5458	633	812	3246514	2204839
6_E1341958444681849504149885726634567_E1375933225043791713245810327798428_E1415923205579748833304225928163209_E1101071553886929165390280292506610_E1184875414555100347213204543479372	5_E1	33	24	72	48	4014	734	324	738681	2164632
7_E1 37 59 33 22 5043 791 713 2458103 2779842 8_E1 41 59 23 20 5579 748 833 3042259 2816320 9_E1 10 10 71 55 3886 929 165 390280 2925066 10_E1 18 48 75 41 4555 1003 472 1320454 3479372	6_E1	34	19	58	44	4681	849	504	1498857	2663456
8_E1 41 59 23 20 5579 748 833 3042259 2816320 9_E1 10 10 71 55 3886 929 165 390280 2925066 10_E1 18 48 75 41 4555 1003 472 1320454 3479372	7_E1	37	59	33	22	5043	791	713	2458103	2779842
9_E1 10 10 71 55 3886 929 165 390280 2925066 10_E1 18 48 75 41 4555 1003 472 1320454 3479372	8_E1	41	59	23	20	5579	748	833	3042259	2816320
10_E1 18 48 75 41 4555 1003 472 1320454 3479372	9_E1	10	10	71	55	3886	929	165	390280	2925066
	10_E1	18	48	75	41	4555	1003	472	1320454	3479372
11_E1 21 35 75 62 5173 1089 778 2327571 4151838	11_E1	21	35	75	62	5173	1089	778	2327571	4151838
12_E1 46 43 55 55 5116 985 1067 3605740 4035978	12_E1	46	43	55	55	5116	985	1067	3605740	4035978

Tabla 5. Medidas obtenidas de las medidas equimásicas.

Imagen 9. Mediciones de las áreas del cordón exterior e interior para el cálculo de la dilución.

Evidentemente con un mayor aporte de material lo que vamos a lograr es que el cordón tenga una altura mayor y por lo tanto una relación de aspecto mayor. Lo que tenemos en las muestras es un predominio evidente del nivel de porosidad en la zona cercana a la interfase entre cordón y material base, aunque en el crecimiento del cordón esta porosidad desaparece, lo que nos hace pensar en un efecto producido por la propia dilución del metal base, en este caso Ti6AL4V. Fusiones y contracciones prematuras en dicha aleación pudieran provocar este fenómeno.

INSTITUTO VALENCIAKO DI COMPETITIVIDAD EMPRES

APORTE (g/m)

Imagen 10. Desarrollo de los cupones según los parámetros empleados E2 equiatómico.

Imagen 11. Desarrollo de los cupones según los parámetros empleados E1 equimásico.

Determinación de los parámetros optimizados en base a los análisis microestructurales.

Mediante la herramienta de modelización y los ensayos realizados vamos a poder obtener la configuración adecuada para el desarrollo de los cupones finales que servirán para el estudio final de las propiedades mecánicas.

Imagen 12. Datos de entrada del programa de modelización.

Imagen 13. Datos de salida del programa de modelización.

Según el gráfico las condiciones más favorables serían para una potencia de aprox 2000W y caudal de polvo aprox 30gpm y velocidad 1000 mm/min. Todo ello para trabajar con una dilución no superior al 20% y con un buen ratio anchura/altura >3. Estas condiciones serán las empleadas en el desarrollo de los cupones finales.

Financiado por ³² la Unión Europea
Estudio de durezas sobre cupones preliminares.

Para comprobar la estabilidad mecánica de los cordones y por lo tanto de la influencia de los parámetros de partida de procesado con respecto a cada uno de los materiales se llevaron a cabo estudios mecánicos de dureza sobre algunos de los cupones.

Como se vieron en apartados anteriores los cordones poseen un porcentaje de porosidad considerable según diversos parámetros de proceso, por lo que el estudio mecánico se quiso llevar a cabo sobre las zonas con menor cantidad de defectos, que son las partes superiores de los cordones. Los defectos de porosidad se encentran en la interfase del cordón y material base, por lo que se intuye que esta presencia tiene su origen en el propio material base de Ti6Al4V, por lo tanto, el realizar las durezas en zonas superiores puede suponer asegurarse de que realmente llevas a cabo el control mecánico sobre el material de alta entropía sin que se pueda evaluar la parte de dilución del propio cordón. Se hizo este estudio entre los cupones del material equiatómico y equimásico.

Imagen 14. Cuadro resumen de todas las durezas llevadas a cabo sobre los cupones.

Como se pueden ver en las gráficas superiores se aprecia una tendencia en cuanto a los valores de dureza en el material equiatómico. Hemos podido ver que esa tendencia es generalmente alcista con respecto a al aporte de material. Los valores, en el caso del material equiatómico E2 van aumentando conforme aumenta la referencia de la probeta. Recordemos que los aportes van en incrementos de 5 g/min, por lo que 2 y 4 tienen 15, la muestra 6 y 8 tienen 20 y la muestra 10 y 12 tienen 25 g/min.

Otra relación que podemos observar es con la potencia empleada para la proyección del polvo, y esto se aprecia tanto en el material equimásico como en el equiatómico. La potencia suministrada al polvo tiene como consecuencia una bajada considerable de los valores de dureza, teniendo en los cupones 2, 6 y 10 con potencias de 2500W valores superiores a aquellos cupones con potencias de hasta 3500W como son los cupones 4, 8 y 12. Esto nos indica una clara relación entre dos las variables más importantes del procesado y como varia la microestructura en ellos según su empleo, y por lo tanto la dureza.

Financiado por ³⁴ la Unión Europea

			IND	ENTACIO	NES					
Ref	1	2	3	4	5	6	7	Media (HV1)	Máx. (HV1)	Mín. (HV1)
E1 - 2	408,00	435,00	431,00	434,00	471,00	441,00		436,67	471,00	408,00
E1 - 4	395,00	435,00	402,00	425,00	344,00	384,00		397,50	435,00	344,00
E1 - 6	458,00	435,00	476,00	476,00	450,00	475,00	443,00	459,00	476,00	435,00
E1 - 8	401,00	340,00	400,00	382,00	408,00	408,00	392,00	390,14	408,00	340,00
E1 - 10	457,00	396,00	273,00	475,00	434,00	454,00	396,00	412,14	475,00	273,00
E1 - 12	433,00	409,00	401,00	410,00	393,00	400,00	407,00	407,57	433,00	393,00
E2 - 2	491,00	510,00	488,00	480,00	493,00	501,00	450,00	487,57	510,00	450,00
E2 - 4	412,00	398,00	403,00	405,00	427,00	421,00	435,00	414,43	435,00	398,00
E2 - 6	606,00	571,00	554,00	570,00	522,00	580,00	582,00	569,29	606,00	522,00
E2 - 8	504,00	383,00	491,00	486,00	494,00	488,00	440,00	469,43	504,00	383,00
E2 - 10	430,00	578,00	591,00	494,00	595,00	530,00	544,00	537,43	595,00	430,00
E2 - 12	516,00	453,00	525,00	554,00	519,00	507,00	520,00	513,43	554,00	453,00

Imagen 16. Cuadro resumen de todas las durezas llevadas a cabo sobre los cupones.

Como se puede ver en la tabla superior, los valores de dureza del material equimásico ronda una media aproximada de 390 HV1 mientras que los valores del material equiatómico muestra una dureza de aproximadamente 466 HV1, lo que supone un 17% superior al equimásico.

Estudios térmicos de material tras proyección.

Durante la ejecución del proyecto se llevaron a cabo diferentes análisis mediante calorimetría para poder caracterizar el recubrimiento a temperatura elevadas y observar como afectan los cambios de fase de los materiales estudiados, tanto los que llevan composición equiatómica como equimásica.

Para llevar a cabo los análisis se emplearon curvas de calentamiento hasta los 1300°C con una velocidad de calentamiento de 10.0K/min y con una permanencia en la temperatura superior de 20 minutos. Para posteriormente llevar a cabo el enfriamiento a una velocidad similar a la de subida.

_+ 🧖	1	Dynamic	1300.0 °C	10.0 K/min
→ 🛋	2	Isothermal	1300.0 °C	20 min
+ 🖌	з	Dynamic	30.0 °C	-10.0 K/min
ե 🖌	4	Dynamic	25.0 °C	-10.0 K/min

Imagen 17. Curvas de calorimetría, parámetros de ensayo.

Ŵ

Financiado por ³⁶ la Unión Europea

Imagen 19. Curvas de calorimetría de las muestras en formato polvo con composición equimásica.

Como se ha visto en parte de la bibliografía el comportamiento de los picos entorno a los 600°C puede deberse a la formación de granos equiaxiales presentes a los largo de los bordes de grano, como zonas de formación, esto puede atribuirse por lo tanto a la recristalización del propio material, modificando seguramente las condiciones mecánicas tras un tratamiento térmico posterior. Esto en principio responderá a una etapa de ablandamiento en las curvas de tensión-deformación como sugieren algunos investigadores. Por otro lado, se obtuvieron resultados similares en el análisis de ambas muestras independientemente de la composición del propio polvo de partida, como se puede ver en la gráfica inferior.

Imagen 20. Curvas de calorimetría de las muestras en formato polvo con composición equiatómica.

También se llevaron a cabo los análisis, pero en muestras sólidas, tras los procesos de sinterización sobre el recubrimiento formado. Para ello tuvieron que extraerse las muestras de las zonas exteriores de tal forma que nos garanticemos que el material extraído sea solamente el del recubrimiento sin tomar como muestras parte del material base, en este caso de la aleación Ti6Al4V. Los resultados obtenidos fueron llevados a cabo en la zona de temperaturas de los 600°C para observar los fenómenos presentes antes de las recristalizaciones producidas a partir de ese rango de temperaturas.

Imagen 21. Curvas de calorimetría de las muestras en formato polvo con composición equiatómica sólida.

Como se puede observar en la imagen superior y teniendo en cuenta que la ventana de temperaturas se encuentra entre los valores de 0 hasta 600°C, las diferencias entre las medidas sobre el polvo y las medidas sobre el sólido del recubrimiento son significativas. Se puede apreciar que el pico máximo tiene lugar a temperaturas de 400°C, pero con valores mW/mg muy reducidos en comparación con los obtenidos en el polvo metálico, lo que nos estaría indicando una menor actividad de transformación tras la proyección del polvo fruto de una estabilización a esa temperatura del material, sin cambios significativos de recristalizaciones.

Microscopia electrónica del material en formato polvo.

Se han llevado a cabo los análisis mediante microscopia electrónica de barrido sobre las muestras de polvo de partida tanto de los materiales de composición equiatómica como equimásica, con el objetivo de conocer la distribución de la composición dentro de la propia granulometría suministrada y observar las diferencias existentes en cada uno de los lotes y a la vez como se reparte la composición en cada uno de los granos. A continuación, se presenta algunos de los análisis obtenidos ya que se han realizado de gran cantidad de lotes.

Una de las conclusiones más significativas y que queda contrastado con el informe de la UPV al respecto del análisis del polvo es que la presencia de una composición cambiantes según análisis de cada uno de los polvos es una tónica general marcada por el propio proceso de fabricación que genera materiales, en este caso polvo metálico, como consecuencia de numerosos ciclos de deformación mecánica. Si bien es cierto que con la tecnología empleada en procesos posteriores como es el laser cladding esta heterogeneidad quedará reducida, como se puede ver en los siguientes espectros de los elementos objetos de estudio subrayados en amarillo. Esto se puede apreciar en las imágenes inferiores comparando los espectros 10 y 11, los cuales nos encontramos con composiciones ligeramente diferentes siendo el mismo grano, o en la comparativa del especto 8 y 9 en donde intervienen dos granos diferentes. Independientemente de ello, se aprecia que se conserva esa distribución equiatómica en gran parte de las muestras.

Financiado por ⁴⁰ la Unión Europea

	4000 1900 1000 1000 1000 1000 1000 1000	Si W V Zr V Nb Zr 0 2 4		Ta W 8	Ta V keV	
ELEMENT			K RATIO	WT%	WT%	ATOMIC %
ſ	K sorios		0.00678	8 71		/2 62
	K series	0,08	0,00078	26	0,49	42,02
SI	K sorios	0,58	0,00107	0.81	0,23	1 69
т	K series	3,62	0.03624	8.62	0,17	10 57
7R	l series	4 51	0.04512	15 54	0.42	10,57
NB	L series	5.01	0.05011	15.87	0.43	10.03
TA	L series	19,39	0,19395	47,71	0,64	15,49
	1500			Ta Ta WW 8	Ta Ta KeV	
ELEMENT	LINE	APPARENT	K RATIO	WT%	WT%	ATOMIC
	TYPE	CONCENTRATION			SIGMA	%
C	K series	1,21	0,01213	10,36	0,83	46,55
0	K series	1,07	0,00362	3,29	0,39	11,11
TI	K series	5,56	0,05563	9,01	0,28	10,16
ZR	L series	6,76	0,06758	15,22	0,65	9,01
NB	L series	8	0,08	16,67	0,69	<mark>9,69</mark>
TA	L series	25,52	0,25523	43,02	1,02	<mark>12,84</mark>

Financiado por ⁴¹ la Unión Europea

ELEMENT	LINE	APPARENT	K RATIO	WT%	WT%	ATOMIC
	ТҮРЕ	CONCENTRATION			SIGMA	%
С	K series	1,37	0,01373	11,15	0,85	46,67
0	K series	1,07	0,00359	2,96	0,36	9,31
SI	K series	0,99	0,00782	1,15	0,24	2,07
TI	K series	6,64	0,06638	9,12	0,25	<mark>9,57</mark>
ZR	L series	10,86	0,10863	19,12	0,61	<mark>10,54</mark>
NB	L series	14,25	0,1425	23,37	0,68	<mark>12,65</mark>
ТА	L series	22,94	0,22938	33,12	0,81	<mark>9,2</mark>
	+ + + + + + + + + + + + + + + + + + +	Ta Nb				
					Ta Ta keV	
ELEMENT			TTTTT	Ta Ta 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Ta keV WT%	ATOMIC
ELEMENT	LINE TYPE	APPARENT CONCENTRATION	т б К RATIO	Ta 8 WT%	Ta keV WT% SIGMA	ATOMIC %
ELEMENT C O	LINE TYPE K series K series	APPARENT CONCENTRATION 1,3 0,71	т 6 К RATIO 0,01301 0.00238	Ta 8 WT% 10,09 1.86	Ta keV WT% SIGMA 0,52 0.22	ATOMIC % 45,52 6,32
ELEMENT C O SI	LINE TYPE K series K series K series	APPARENT CONCENTRATION 1,3 0,71 1.5	т 6 К RATIO 0,01301 0,00238 0.01186	Ta 8 WT% 10,09 1,86 1.69	Ta keV WT% SIGMA 0,52 0,22 0,16	ATOMIC % 45,52 6,32 3,26
ELEMENT C O SI TI	LINE TYPE K series K series K series K series K series	APPARENT CONCENTRATION 1,3 0,71 1,5 6,7	Image: Constraint of the second state of th	Ta 8 WT% 10,09 1,86 1,69 8,85	Ta keV WT% SIGMA 0,52 0,22 0,16 0,16	ATOMIC % 45,52 6,32 3,26 10,01
ELEMENT C O SI TI ZR	LINE TYPE K series K series K series K series L series	APPARENT CONCENTRATION 1,3 0,71 1,5 6,7 8,67	K RATIO 0,01301 0,00238 0,01186 0,06704 0,08666	WT% 10,09 1,86 1,69 8,85 15,18	Ta keV WT% SIGMA 0,52 0,22 0,16 0,16 0,38	ATOMIC % 45,52 6,32 3,26 10,01 9,02
ELEMENT C O SI TI ZR NB	LINE TYPE K series K series K series K series L series L series	APPARENT CONCENTRATION 1,3 0,71 1,5 6,7 8,67 15,62	Image: Constraint of the second state of th	Ta 8 WT% 10,09 1,86 1,69 8,85 15,18 25,39	Ta keV WT% SIGMA 0,52 0,22 0,16 0,16 0,38 0,44	ATOMIC % 45,52 6,32 3,26 10,01 9,02 14,81
ELEMENT C O SI TI ZR NB TA	LINE TYPE K series K series K series K series L series L series L series	APPARENT CONCENTRATION 1,3 0,71 1,5 6,7 8,67 15,62 26,86	K RATIO 0,01301 0,00238 0,01186 0,06704 0,08666 0,15622 0,26865 0,26865	WT% 10,09 1,86 1,69 8,85 15,18 25,39 36,95	Ta keV WT% SIGMA 0,52 0,22 0,16 0,16 0,16 0,38 0,44 0,53	ATOMIC % 45,52 6,32 3,26 10,01 9,02 14,81 11,07

Adicionalmente también se aprecia un incremento poco significativo del contenido de Ta en la muestras como se puede apreciar en los análisis inferiores.

Financiado por ⁴² la Unión Europea

ELEMENT	LINE	APPARENT	K RATIO	WT%	WT%	ATOMIC
	ΤΥΡΕ	CONCENTRATION			SIGMA	%
C I	< series	1,29	0,01293	10,18	0,52	45,1
0	< series	0,92	0,0031	2,52	0,24	8,39
SI I	< series	1,28	0,01015	1,55	0,17	2,94
TI H	< series	6,93	0,0693	9,7	0,17	<mark>10,78</mark>
ZR	L series	9,17	0,09169	17,59	0,39	<mark>10,26</mark>
NB	L series	10,13	0,10134	17,99	0,41	<mark>10,3</mark>
TA	L series	27,19	0,27194	39,93	0,54	<mark>11,74</mark>

Financiado por ⁴⁴ la Unión Europea

ELEMENT	LINE TYPE	APPARENT CONCENTRATION	K RATIO	WT%	WT% SIGMA	ATOMIC %
С	K series	1,11	0,01108	8,32	0,65	39,13
0	K series	1,17	0,00394	2,99	0,31	10,57
SI	K series	1,3	0,01034	1,46	0,23	2,93
TI	K series	7,67	0,07669	9,93	0,22	<mark>11,71</mark>
ZR	L series	10,31	0,10307	18,08	0,53	<mark>11,19</mark>
NB	L series	12,47	0,1247	20,26	0,55	<mark>12,32</mark>
TA	L series	28,68	0,28683	38,73	0,71	<mark>12,09</mark>

Tras el procesado de los polvos mediante la tecnología laser cladding y la obtención de los cupones preliminares, se analizo mediante microscopia electronica la heterogeneidad del recubrimiento o si habria existido una gran dilucion con el metal base y como afectaba este. Para ello se seleccionaron diversas muestras de los cupones preliminares para llevar a cabo los microanalisis, los cuales se exponen los resultados más significativos.

Los análisis se basaron en la determinación elemental de los cupones preliminares para estudiar como la concentraciones iniciales del polvo metálico evolucionan con respecto a la zona del propio cordón, centrandose en el exterior, interior y zonas cercanas a la interfase.

E1 1.1

250µm

Financiado por ⁴⁵ la Unión Europea

ENTREGABLE PROYECTOS —

Flowsout	LINE		KRATIO		WT%	ΑΤΟΜΙΟ
Element	ITPE	CONCENTRATION	KRATIU	VVI%	SIGIVIA	%
AL	K SERIES	0,77	0,00702	1,84	0,14	4,31
Si	K SERIES	0,77	0,00703	1,53	0,25	3,44
Ti	K SERIES	30,43	0,30427	49,98	0,94	<mark>65,99</mark>
V	K SERIES	0,84	0,00844	1,35	0,29	1,68
Zr	L SERIES	5,3	0,05304	11,44	0,57	<mark>7,93</mark>
Nb	L SERIES	7,26	0,07258	14,53	0,63	<mark>9,89</mark>
Та	L SERIES	10,49	0,10488	19,34	1,23	<mark>6,76</mark>

	Line				Wt%	Atomic
Element	Туре	Apparent Concentration	k Ratio	Wt%	Sigma	%
AI	K series	0,91	0,00823	2,09	0,11	4,93
Si	K series	0,77	0,00709	1,5	0,2	3,4
Ti	K series	30,29	0,30292	48,57	0,73	<mark>64,55</mark>
V	K series	0,96	0,00957	1,5	0,23	1,87
Zr	L series	5,43	0,05434	11,48	0,45	<mark>8,01</mark>
Nb	L series	7,61	0,07614	14,92	0,5	<mark>10,23</mark>
Та	L series	11,12	0,11124	19,93	0,98	<mark>7,01</mark>

	Line				Wt%	Atomic
Element	Туре	Apparent Concentration	k Ratio	Wt%	Sigma	%
AI	K series	1,52	0,01379	3,61	0,09	7,55
Si	K series	0,34	0,00315	0,68	0,12	1,36
Ti	K series	39,51	0,39515	60,61	0,6	<mark>71,44</mark>
V	K series	1,57	0,01571	2,38	0,18	2,64
Zr	L series	6,43	0,06425	12,27	0,3	<mark>7,6</mark>
Nb	L series	5,73	0,05733	10,25	0,32	<mark>6,23</mark>
Та	L series	5,63	0,05629	10,2	0,73	<mark>3,18</mark>

En los analisis anteriores podemos ver para una composicion equimásica del material TiNbZrTa como la distribucion en las pruebas preliminares no conservan la composicion promedio encontrada en los polvos analizados que provienen de un proceso por aleación mecánica. Vemos que los contenidos de titanio son muy superiores a los

Financiado por ⁴⁷ la Unión Europea definidos de partida. Se debe tener en cuenta que las muestras se han llevado a cabo sobre sustratos de aleaciones de titanio en formato chapa tras diversas operaciones de tratamiento superficial. El material en cuestión del sustratno es una aleacion tipo Ti6Al4v, y es por ese motivo que se observa la presencia del elemento vanadio en los espectros. Lo más significativo es que este contenido de V se observa en la propia corteza del cordón, lo que no esta indicando que durante el proceso laser cladding, en las primeras capas de fabrición, existe tal cantidad de dilucion que el material procesado deja de catalogarse como un material de alta entropia, no cumpliendo los requisitos de este.

Como se puede ver en los analisis inferiores estos tiene lugar en todos los cordones preliminares tambien presentes con composicoines equiatómicas.

E2 4.1

695µm

ACRÓNIMO

V	K series	1,61	0,01608	2,61	0,28	2,83
Zr	L series	4,69	0,04688	9,64	0,46	<mark>5,85</mark>
Nb	L series	4,8	0,048	9,24	0,49	<mark>5,51</mark>
Та	L series	4,99	0,04987	9,8	1,17	<mark>3</mark>
W	L series	0	0	0	1,29	0

E2 4.5

	Line				Wt%	Atomic
Element	Туре	Apparent Concentration	k Ratio	Wt%	Sigma	%
AI	K series	1,5	0,01361	3,6	0,22	7,41
Ti	K series	43,6	0,43598	65,53	1,45	75,9
V	K series	1,94	0,01936	2,88	0,42	3,14
Zr	L series	4,19	0,04194	8,07	0,65	4,91
Nb	L series	4,85	0,04852	8,72	0,71	5,21
Та	L series	6,18	0,06185	11,19	1,67	3,43

Financiado por ⁴⁹ la Unión Europea

	Line				Wt%	Atomic
Element	Туре	Apparent Concentration	k Ratio	Wt%	Sigma	%
AI	K series	1,21	0,01093	2,92	0,13	7,19
Si	K series	0,73	0,00667	1,53	0,25	3,62
Са	K series	0,5	0,00443	0,81	0,11	1,34
Ti	K series	22,96	0,22957	40,87	0,76	<mark>56,61</mark>
v	K series	0,83	0,00828	1,43	0,23	1,87
Zr	L series	7,72	0,07722	18,44	0,57	<mark>13,42</mark>
Nb	L series	4,55	0,04552	10,06	0,55	<mark>7,18</mark>
Та	L series	12,37	0,12372	23,93	0,94	<mark>8,78</mark>
W	L series	0	0	0	0,99	0

ENTREGABLE PROYECTOS —

	Line				Wt%	Atomic
Element	Туре	Apparent Concentration	k Ratio	Wt%	Sigma	%
AI	K series	0,96	0,00866	2,13	0,16	5,51
Si	K series	1,01	0,00928	1,97	0,33	4,9
Ti	K series	23,51	0,23508	38,79	0,93	<mark>56,51</mark>
V	K series	1,19	0,01194	1,91	0,34	2,62
Zr	L series	5,45	0,05449	12,83	0,74	<mark>9,81</mark>
Nb	L series	5,44	0,05438	11,76	0,78	<mark>8,84</mark>
Та	L series	17,25	0,17249	30,6	1,34	<mark>11,8</mark>

E2 4.1

250µm

	cps/eV			Ta Ta	42 Ta keV	
					Wt%	Atomic
Element	Line Type	Apparent Concentration	k Ratio	Wt%	Sigma	%
С	K series	5,5	0,05498	26,67	1,43	55,5
0	K series	1,97	0,00664	7,33	0,91	11,45
Al	K series	2,55	0,01835	3,15	0,13	2,92
Ti	K series	36,26	0,36258	41,54	0,41	<mark>21,67</mark>
V	K series	1,88	0,01876	2,14	0,24	1,05
Zr	L series	9,07	0,0907	12,15	0,53	<mark>3,33</mark>
Nb	L series	6,83	0,06833	8,65	0,56	<mark>2,33</mark>
Та	L series	9,37	0,09371	12,78	1,2	<mark>1,77</mark>

					Wt%	Atomic
Element	Line Type	Apparent Concentration	k Ratio	Wt%	Sigma	%
С	K series	3,71	0,03714	17,63	1,4	46,5
0	K series	1,67	0,00561	6,18	0,98	12,23
Al	K series	2,46	0,0177	3 <i>,</i> 08	0,15	3,61
Ti	K series	38,13	0,38132	43,04	0,48	<mark>28,47</mark>
V	K series	1,53	0,01531	1,71	0,27	1,07
Zr	L series	5,96	0,0596	8,37	0,58	<mark>2,91</mark>
Nb	L series	5,59	0,05588	7,36	0,61	<mark>2,51</mark>
Та	L series	11,55	0,11554	15,46	1,32	<mark>2,71</mark>

	Line				Wt%	Atomic
Element	Туре	Apparent Concentration	k Ratio	Wt%	Sigma	%
AI	K series	1,72	0,01558	3,64	0,13	7,95
Si	K series	0,54	0,00492	0,97	0,23	2,04
Ti	K series	40,35	0,40353	56,94	0,81	<mark>70,08</mark>
V	K series	1,68	0,01683	2,34	0,24	2,7
Zr	L series	4,55	0,04553	8,71	0,42	<mark>5,63</mark>
Nb	L series	4,87	0,04867	8,64	0,44	<mark>5,48</mark>
Та	L series	11,46	0,1146	18,76	0,97	<mark>6,11</mark>

	cps/eV		a) [īa] • - 1 - 1 - 1 - 1 0	Zr Nb [27 Nb 1 4 4	
	Line				Wt%	Atomic
Element	Туре	Apparent Concentration	k Ratio	Wt%	Sigma	%
AI	K series	2,06	0,01863	4,82	0,16	10,16
Ti	K series	39,08	0,39078	59 <i>,</i> 85	1,23	<mark>71,08</mark>
v	K series	1,68	0,01682	2,54	0,25	2,84
Zr	L series	5,27	0,05272	10,56	0,46	<mark>6,58</mark>
Nb	L series	4,23	0,04229	7,89	0,45	<mark>4,83</mark>
Та	L series	7,75	0,07751	13,98	1,18	<mark>4,39</mark>

Como conclusión de este análisis de cordones preliminares se puede indicar que el material procesado por técnicas de lase cladding produce una dilución lo suficientemente importante como para determinar que las primeras capas no mantendrán la composición inicial del polvo y que se requerirá un determinado número de capas para ello.

Financiado por ⁵⁴ la Unión Europea

Estudio de cupones optimizados Al0,1CrFeCoNi.

Durante estudios anteriores llevados a cabo con los materiales de alta entropía Al0,1CrFeCoNi se han obtenido una serie de parámetros de fabricación que han servido al centro tecnológico para el desarrollo optimizado de este material. Para este tipo de material y para estudiar el efecto del tratamiento térmico se seleccionaron los siguientes parámetros:

Paso (mm)	2.34
Potencia (W)	3000
Velocidad (m/s)	0.0167

Parámetros optimizados para el desarrollo de cupones y estudio de la temperatura sobre el material de alta entropía Al0,1CrFeCoNi.

De estos cupones se lleva a cabo la comparativa de la evolución de las microdurezas sobre los perfiles proyectados mediante Laser Cladding. Las medidas de dureza se llevaron a cabo desde el exterior de las muestras hasta el interior del metal base con la finalidad de comprobar cómo va afectando el nivel de los elementos de aleación, por la propia dilución, con las propiedades mecánicas. Los ensayos se llevaron a cabo mediante una dureza tipo Vickers con escala de 0.5. La separación entra cada una de las indentaciones fueron de tres vences el largo de la diagonal de la huella tal y como indica la norma de referencia.

Para llevar a cabo las durezas previamente se llevaron a cabo los cortes y las preparaciones metalográficas de los materiales depositados. Se llevaron a cabo los procesos de lijado y pulido previa inspección por microscopio óptico para la medición de la huella penetrada en el material a analizar. Las muestras con una pasada representan poseen aproximadamente 2mm de espesor, mientras que las de dos pasadas poseen alrededor de los 3.2mm.

Uno de los estudios fue comprobar como afectaban los valores de dureza con respecto a la altura de los cordones, por si existían cambios significativos relacionados con la distribución de la dilución. Durante la ejecución del recubrimiento no se pudieron observar diferencias significativas en cuanto a la evolución de este con respecto a la profundidad, como podemos ver en la imagen inferior tanto las muestras con una o dos pasadas la evolución de la dureza no cambia significativamente con respecto al espesor del recubrimiento. Esto tiene lugar de la misma forma en las muestras con una y con dos pasadas, lo que nos indica que, a pesar de existir una dilución mayor en una de las muestras, la variación de la dureza no queda influenciada.

Vemos que en la gráfica inferior se observa una dureza exterior de alrededor de 165 - 170 HV0.5 (Cota 0mm) mientras que, en la zona interior, en la zona donde nos encontramos la interfase metal base recubrimiento, nos encontramos con rangos de

ENTREGABLE PROYECTOS —

dureza de 165 - 175 HV0.5 (Cota 2mm).

Este mismo análisis fue llevado a cabo a través de las mismas muestras pero con diversos tratamientos térmicos para estudiar su comportamiento y comprobar si existe o no influencia microestructural y por lo tanto mecánica. Los tratamientos térmicos que se llevaron a cabo se encuentran en las zonas donde se supone, tras revisión bibliográfica, que se producen cambios estructurales por el efecto del cambio de fases como producto de la conjunción del aluminio, aunque a priori el cambio producto de este elementos de aleación sería más acentuado si su contenido fuera mayor.

Imagen 22. Evolución de los valores de dureza tras tratamientos térmicos.

A pesar de ello, y como se puede ver en la gráfica superior, si se producen cambios significativos en cuanto a los tratamientos térmicos. Como se puede ver existe tanto a temperaturas de 900 como 1200°C una disminución de los valores de dureza en la superficie, en la zona cortical del cordón, mientras que su evolución es alcista hasta alcanzar casi los 180HV con temperaturas de 900°C y bajista en el caso de temperaturas mayores, cercanas a los 1200°C en los cuales vemos valore de dureza menores de los 140HV.

En el caso de llevar a cabo tratamientos térmicos a temperaturas de 1000°C el fenómeno y tendencia es similar al logrado por el efecto de la temperatura de 900°C, lo cual nos indica un fenómeno asociado al cambio microestructural. A pesar de ellos los cambios producidos no son lo suficientemente significativos como para asociar un fenómeno metalúrgico diferencial, el cual si pudiera alcanzarse con valores de contenido de aluminio superiores.

En las gráficas se han superpuesto los valores obtenidos sobre muestras que poseen una capa singular (31) junto con otras que tienen el doble de espesor (32), pero esta característica no interfiere en gran medida en el resultado obtenido.

Imagen 23. Evolución de los valores de dureza tras tratamientos térmicos.

Financiado por ⁵⁷ la Unión Europea

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Pos (mm)	0,08	0,35	0,6	0,83	1,07	1,31	1,56	1,79	2,03	2,27	2,51	2,75	3	3,23	3,46	3,69	3,93	4,15	4,38	4,6
31-25 1200ºC	137	137	133	140	140	138	138	129	123	138	138	128	135	127	135					
32-26 1200ºC	133	134	138	145	145	142	151	146	136	145	131	137	129	130	127	132	129	127	137	135
31-25 1000ºC	142	149	146	162	152	142	156	157	189	171	164	164	159	163	159	164	157	152	158	156
32-26 1000ºC	109	142	147	146	144	143	150	147	140	149	149	135	151	161	153	151	161	169	167	163
31-25 900ºC	148	145	151	151	155	145	167	164	159	172	167	166	167	158	162	158	163	155	154	160
32-26 900ºC	161	154	139	151	158	161	154	152	154	153	156	160	156	174	177	168	175	166	173	161

Imagen 24. Valores de dureza tras tratamientos térmicos.

También se llevaron a cabo estudios tribológicos para estudiar el comportamiento de los materiales frente a los diferentes tratamiento térmicos empleados. Para ello se mecanizó la superficie de los cordones obtenidos por proyección cladding para obtener una superficie lo suficientemente plana que no nos interceda en los valores obtenidos. Algunas de las muestras fueron sometidas a tratamiento térmicos de 900°C (muestras Ref 25 y 26), mientras que otras se estudiaron sin este para contrastar los datos.

Para llevar a cabo los ensayos se modificaron dos variables del ensayo de tribología para observar la evolución del coeficiente de fricción en función del valor de cada una de estas variables. En el apartado de carga se realizaron ensayos con cargas de 1N y 5N sobre la superficie proyectada. En el apartado de velocidad de deslizamiento de la muestra se establecieron 50rpm y 100rpm. A continuación se muestras las gráficas obtenidas para una de las muestras y las configuraciones posibles. De la misma forma que en el ensayo de dureza, se tiene en cuenta el resultado sobre muestras que poseen el doble de capa (32) junto con el que posee una capa singular (31).

Financiado por ⁵⁸ la Unión Europea

Financiado por 59 . la Unión Europea

INSTITUTO VALENCIANO DE COMPETITIVIDAD EMPRESARIAL

Imagen 25. Valores obtenidos de coeficiente de fricción sobre los materiales de alta entropía.

Imagen 26. Comparativa de valores de coeficiente de fricción.

Todos los valores obtenidos de coeficiente de fricción son similares independientemente de los tratamientos térmicos efectuado. Aunque exista una ligera diferencia en cuanto a los valores de dureza, esta no queda claramente reflejada en los coeficientes de fricción. Como vemos en la gráfica superior y table inferior los valores se encuentran entre 0.38 y 0.44.

	1N 50 RPM	1N 100 RPM	5N 50 RPM	5N 100 RPM
MUESTRA 25	0,44	0,39	0,34	0,33
MUESTRA 26	0,39	0,35	0,38	0,36
MUESTRA 31	0,38	0,39	0,36	0,35
MUESTRA 32	0,42	0,41	0,37	0,35

Otra de las pruebas que se llevaron a cabo sobre materiales de mayor volumen fueron los ensayos a tracción. Para llevar a cabo estos ensayos se decidió llevar a cabo el crecimiento de capa del material de alta entropía hasta valores de aproximadamente 10mm de altura. Posteriormente se llevaron a cabo las diferentes mecanizaciones para poder extraer las probetas propias del ensayo de tracción. Debido a las dimensiones tan reducidas que se obtuvieron los procesos de mecanizados consistieron en el rectificado de la parte calibrada de la probeta para después las extracciones de la propia muestra mediante cortes de precisión.

Imagen 27. Desarrollo de probetas de tracción donde se mecanizan en primer lugar la zona calibrada para posteriormente extraer la propia probeta.

Financiado por ⁶² la Unión Europea

Imagen 28. Extracción de las muestras reducidas a tracción.

Las muestras extraídas fueron sometidas a tratamientos térmicos para comprobar su efecto en cuanto a la evolución de las propiedades mecánicas. Los tratamiento llevados a cabo consistieron en un calentamiento progresivo hasta 800°C y los 1200°C y un posterior enfriamiento a temperatura ambiente a través de un enfriamiento fuera de horno.

A continuación, se presentan las gráficas obtenidas.

Imagen 29. Gráfica tensión deformación de la muestra 27.1 TT 1200

ENTREGABLE PROYECTOS —

Imagen 30. Gráfica tensión deformación de la muestra 27.1 TT 800

Imagen 31. Gráfica tensión deformación de la muestra 28.1 TT 800

ENTREGABLE **PROYECTOS**

Imagen 32. Gráfica tensión deformación de la muestra 28.2 TT 1200

Imagen 33. Gráfica tensión deformación de la muestra 28.2 TT 800

ENTREGABLE PROYECTOS —

Imagen 34. Gráfica tensión deformación de la muestra 28.2sin TT

Imagen 35. Gráfica tensión deformación de la muestra 28.3sin TT

A continuación, se presentan los resultados comparativamente en forma de gráficos de los promedios, y los valores numéricos en forma de tablas.

28.3SIN TT	8070,67	79,09	196,26
27.1 TT 800	10748,60	114,18	117,21
28.1 TT 800	11713,10	95,12	174,52
28.2 TT 800	10084,10	91,89	133,59
27.1 TT1200	11664,80	176,27	190,06
28.2 TT 1200	10403,00	112,13	136,94

Imagen 36. Promedio de los resultados a tracción obtenidos para cada uno de los tratamientos llevados a cabo.

Como se puede ver en los resultados, los tratamientos térmicos llevados a cabo sobre las muestras depositadas de material de alta entropía presentan ligeras modificaciones con respecto a los materiales sin esos tratamientos. La evidencia más clara podemos observarla en cuanto a los valores de resistencia a tracción, los cuales siguen un patrón

Financiado por ⁶⁷ la Unión Europea similar a los obtenidos del módulo de elasticidad. Los valores descienden progresivamente en tanto en cuanto la temperatura del tratamiento aumenta. Independientemente si analizamos dato a dato los resultados vemos que los valores son dispares y no podemos afirmar una tendencia determinada, pero si desde un punto de vista general, en el cual el efecto del tratamiento térmico no afecta en gran medida a la propia aleación. Esta conclusión no sería acorde a lo mencionado con los valores de dureza expresados anteriormente, por lo que asociamos estos a los valore de dilución con el metal base, siendo esta dilución la causante de la disparidad de los valores de resistencia a tracción.

Estudio de cupones optimizados Ti25Nb25Zr25Ta25.

Una vez desarrollados los parámetros optimizados de la aleación Ti25Nb25Zr25Ta25 se dispuso a llevar a cabo probetas de un tamaño suficiente para estudiar el comportamiento mecánico y tribológico de dicha aleación. Para ello se dispuso de material suficiente fabricado mediante la tecnología de aleado mecánico y se llevaron a cabo las respectivas tamizaciones para que puedan llevarse a cabo los procesos de recubrimientos de láser cladding. Como en ocasiones anteriores para los cordones preliminares se tuvieron que preparar las muestras base o materiales base para acondicionar la deposición. Para ello se van a emplear materiales en formato chapa de un grosor de 10mm con las consiguientes mecanizaciones. Lo mismo se aplicó con el material de acero inoxidable con bajo contenido en carbono, pero con un espesor de mayor tamaño que para la chapa de Ti6Al4V.

Tras la preparación y puesta a punto de los materiales a depositas se observaron las primeras evidencias de que algo diferente estuviera ocurriendo en el polvo tamizado. Las primeras evidencias surgieron ante el avance del material de partida por el alimentador, en donde se apreciaba un flujo poco constante, entrecortado conforme iba avanzando. Estas situaciones fueron objeto de debate durante los ejercicios de deposición entre el colaborador Tecnoclad y Aidimme, ya que durante el desarrollo de lo que se ha denominado cupones preliminares para estudiar los parámetros no se produjo una alimentación tan defectuosa, si es cierto que no era como los materiales atomizados, perfectamente esféricos, pero con ligeros golpeteos se puedo procesar los cupones preliminares que se han expuesto en la presente memoria. Pero en esta ocasión no fue posible recircular el polvo. Por lo tanto, se tomó la decisión de volver de nuevo a tamizar para descartar la presencia de polvo granulométricamente inferior al deseado, que para la tecnología de láser cladding nos encontramos con valore desde los 60 hasta las 175µm.

Financiado por ⁶⁸ la Unión Europea

Imagen 37. Detalle del apelmazamiento del sistema de alimentación del polvo de partida.

Tras este episodio se llevaron a cabo nuevos intentos para lograr la deposición que se logró en el caso de los cupones preliminares pero con el polvo equiatómico. Los resultados no llegaron a completarse debido a principalmente dos factores. El polvo suministrado seguía teniendo una granulometría menor, quizás porque queda apelmazado en una primera instancia y posteriormente durante los procesos de proyección este se separa, o que el polvo de tamaño adecuado para el procesado cladding se disgrega o rompe por este efecto. Otra posibilidad es que pequeñas partículas quedan adheridas a gránulos superiores haciendo que las menores se disgreguen y originen colapsos en los tubos de almacenamiento.

Imagen 38. Detalle del canal de distribución del polvo donde se aprecia un flujo discontinuo de alimentación.

Imagen 39. Detalle de la volatilidad del polvo que queda en suspensión tras la salida de este por la boquilla de deposición.

El empleo de polvo reducido con una cantidad importante en la composición de elementos como el titanio puede producir chisporroteos debido a su inflamabilidad. Este efecto tuvo lugar en las operaciones de procesado, como se puede apreciar en las imágenes inferiores, por lo que finalmente se descartó el empleo de este polvo tanto en la técnica de láser cladding como en la técnica de alta velocidad, debido a que no se quería poner en riesgo la maquinaria con la que íbamos a procesar ni los técnicos que la emplean.

Imagen 40. Detalle de la deflagración del polvo depositado en el suelo

Financiado por ⁷¹ la Unión Europea

Resumen y conclusiones.

A continuación, se detallan las principales conclusiones obtenidas durante el transcurso del proyecto:

- Se ha obtenido material de alta entropía en formato polvo mediante el procesado de aleado mecánico.
- Se ha podido comprobar que la aplicación de las técnicas de cladding convencional con el material de partida de alta entropía hacen que exista una evolución de los elementos de aleación a lo largo del recubrimiento, lo que hace que se modifique la naturaleza del propio recubrimiento.
- Se ha podido procesar material de alta entropía tipo Al_{1.5}CoCrFeNi mediante técnicas de procesado cladding convencional con el suficiente tamaño para poder extraer diversas muestras para ser caracterizadas.
- Se ha obtenido valores de resistencia a tracción del material de alta entropía Al_{1.5}CoCrFeNi en diferentes estados de tratamiento térmico sin observar grandes modificaciones en el material.
- Se ha comprobado que los diferentes tratamientos térmicos llevados a cabo en el material Al_{1.5}CoCrFeNi no nos da como resultados cambios significativos en cuanto al comportamiento mecánico ni tribológico.
- Se han obtenido los parámetros de procesado para la obtención de un material de alta entropía tipo Ti25-Nb25-Zr25-Ta25.
- Se han obtenido los parámetros de procesado de la aleación de alta entropía Ti25-Nb25-Zr25-Ta25 para las técnicas de deposición laser cladding convencional, para los primeros cordones preliminares.
- La alta dilución hace que las propiedades mecánicas a dureza alcancen valores diferentes a lo largo del cordón en el caso de las muestras donde se ha proyectado el material Ti25-Nb25-Zr25-Ta25.
- Las pruebas preliminares de Ti25-Nb25-Zr25-Ta25 son las primeras en procesarse con la técnica de láser cladding.
- Se presentan los valores de los parámetros de procesabilidad cladding con elevados niveles de defectos, sobre todo con valores de porosidad excesivos, en cambio no se presentan agrietamientos en los cordones.

Financiado por ⁷² la Unión Europea - La procesabilidad de materiales como el Ti25-Nb25-Zr25-Ta25 tienen como riesgo principal su capacidad de inflamabilidad que puede suponer ciertas limitaciones al procesado tras el aleado mecánico.

Trabajos futuros.

Debido a los resultados obtenidos en la presente investigación se exponen posibles líneas de actuación relacionadas con el desarrollo de materiales de alta entropía mediante la técnica de laser cladding:

- A la hora del desarrollo de nuevos recubrimientos de alta entropía se debe tener en cuenta la dilución presente con el material base, siendo una variable importante debido a que puede modificar la naturaleza de recubrimiento. Por ello sería conveniente un estudio de la evolución de recubrimiento de altos espesores. Si se emplean las técnicas de deposición laser cladding como tecnología de fabricación aditiva se deberá tener en cuenta la evolución descrita.
- Se requerirá una mayor obtención de material para evaluar las propiedades mecánicas de la deposición a tracción tanto en el sentido paralelo a la dirección de fabricación como en sentido transversal. De esta forma podremos evaluar resistencias mecánicas del recubrimiento a distintas alturas de deposición.
- Debido a la alta ductilidad del material obtenido, se requerirá el estudio de la aleación sobre ambientes a temperaturas criogénicas o ambientes corrosivos, de tal forma que podamos estudiar su comportamiento.

Domicilio fiscal — C/ Benjamín Franklin 13. (Parque Tecnológico) 46980 Paterna. Valencia (España) Tlf. 961 366 070 | Fax 961 366 185

Domicilio social — Leonardo Da Vinci, 38 (Parque Tecnológico) 46980 Paterna. Valencia (España) Tlf. 961 318 559 - Fax 960 915 446

> aidimme@aidimme.es www.aidimme.es